Direct effect
Create two expanded datasets so that hazards given A=1 can be
computed for all subjects (even those with A=0), and viceversa (everyone
has A = 0). In an RCT this is not necessary, could stratify models above
and this step by treatment arm.
Data set construction where A = 1
treated <- baseline[rep(1:n,each=length(cutTimes)),] #One row for each interval k+1 for k=0,...,K
treated$dtime <- rep(cutTimes,n)
treated$rx <-1
- Data set construction where A = 0
# Make analogous dataset for placebo
placebo <- baseline[rep(1:n,each=length(cutTimes)),] #One row for each time
placebo$dtime <- rep(cutTimes,n)
placebo$rx <- 0
- Estimate conditional discrete hazards (cause specific for each cause
of death/competing event conditioned for event and hazard of competing
event) for each subject in each time interval in both cloned
datasets
treated$hazardP <- predict(plrFitP, newdata = treated, type = 'response')
treated$hazardO <- 0
treated$s <- (1-treated$hazardP) * (1-treated$hazardO)
placebo$hazardP <- predict(plrFitP, newdata = placebo, type = 'response')
placebo$hazardO <- 0
placebo$s <- (1-placebo$hazardP) * (1-placebo$hazardO)
- Glimpse of “treated” data:
treated %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
1 |
0.0231061 |
0 |
0.9768939 |
8478.1 |
489 |
1 |
1 |
0.0234620 |
0 |
0.9765380 |
8478.2 |
489 |
2 |
1 |
0.0238175 |
0 |
0.9761825 |
8478.3 |
489 |
3 |
1 |
0.0241730 |
0 |
0.9758270 |
8478.4 |
489 |
4 |
1 |
0.0245289 |
0 |
0.9754711 |
8478.54 |
489 |
54 |
1 |
0.0658483 |
0 |
0.9341517 |
8478.55 |
489 |
55 |
1 |
0.0681584 |
0 |
0.9318416 |
8478.56 |
489 |
56 |
1 |
0.0706130 |
0 |
0.9293870 |
8478.57 |
489 |
57 |
1 |
0.0732226 |
0 |
0.9267774 |
8478.58 |
489 |
58 |
1 |
0.0759986 |
0 |
0.9240014 |
- Glimpse of “placebo” data:
placebo %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
0 |
0.0458879 |
0 |
0.9541121 |
8478.1 |
489 |
1 |
0 |
0.0431460 |
0 |
0.9568540 |
8478.2 |
489 |
2 |
0 |
0.0409669 |
0 |
0.9590331 |
8478.3 |
489 |
3 |
0 |
0.0392643 |
0 |
0.9607357 |
8478.4 |
489 |
4 |
0 |
0.0379704 |
0 |
0.9620296 |
8478.54 |
489 |
54 |
0 |
0.0142297 |
0 |
0.9857703 |
8478.55 |
489 |
55 |
0 |
0.0113442 |
0 |
0.9886558 |
8478.56 |
489 |
56 |
0 |
0.0088875 |
0 |
0.9911125 |
8478.57 |
489 |
57 |
0 |
0.0068390 |
0 |
0.9931610 |
8478.58 |
489 |
58 |
0 |
0.0051668 |
0 |
0.9948332 |
We will implement the following estimator, wrapped as the function
calculateCumInc
from the utility_functions
script available in this repository.
calculateCumInc <-
function(inputData,
timepts = cutTimes,
competing = FALSE) {
cumulativeIncidence <-
matrix(NA, ncol = length(unique(inputData$patno)), nrow = length(cutTimes))
# Insert the event probabilities at the first time interval:
cumulativeIncidence[1,] <-
inputData[inputData$dtime == 0,]$hazardP * inputData[inputData$dtime ==
0,]$hazardO
# Create a matrix compatible with 'cumulativeIncidence' with survival probabilities at each time
survivalProb <-
t(aggregate(s ~ patno, data = inputData, FUN = cumprod)$s) #split the long data into subsets per subject
for (i in 2:length(cutTimes)) {
subInputDataP <-
inputData[inputData$dtime == (i - 1),]$hazardP #OBS: dtime starts at 0
subInputDataO <-
(1 - inputData[inputData$dtime == (i - 1),]$hazardO) #OBS: dtime starts at 0
if (!competing)
cumulativeIncidence[i,] <-
subInputDataO * subInputDataP * survivalProb[(i - 1),] # OBS: survivalProb entry i is time point i-1
else
cumulativeIncidence[i,] <-
(1 - subInputDataO) * survivalProb[(i - 1),]
}
meanCumulativeIncidence <-
rowMeans(apply(cumulativeIncidence, MARGIN = 2, cumsum)) #rowMeans(cumulativeIncidence)
return(meanCumulativeIncidence)
}
cumIncTreated <- calculateCumInc(treated)#a=1
cumIncPlacebo <- calculateCumInc(placebo)#a=0
cumIncTreated_de_60 <- cumIncTreated[length(cutTimes)]
cumIncPlacebo_de_60 <- cumIncPlacebo[length(cutTimes)]
de_rr <- cumIncTreated_de_60 / cumIncPlacebo_de_60
de_rd <- cumIncTreated_de_60 - cumIncPlacebo_de_60
results_de <- data.frame(cumIncTreated_de_60, cumIncPlacebo_de_60, de_rr, de_rd)
knitr::kable(round(results_de, 2))
Total effect
- We are going to use the same code as in the previous section, except
that in this case instead of fixing the hazard of other causes to death
as 0, we are going to calculate hazards for this outcome using predicted
values from the
plrfit0
model and recalculate the survival
probability, given death
treated$hazardO <- predict(plrFitO, newdata = treated, type = 'response')
treated$s <- (1-treated$hazardP) * (1-treated$hazardO)
placebo$hazardO <- predict(plrFitO, newdata = placebo, type = 'response')
placebo$s <- (1-placebo$hazardP) * (1-placebo$hazardO)
- Glimpse of “treated” data:
treated %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
1 |
0.0231061 |
0.0759711 |
0.9026781 |
8478.1 |
489 |
1 |
1 |
0.0234620 |
0.0747473 |
0.9035444 |
8478.2 |
489 |
2 |
1 |
0.0238175 |
0.0735928 |
0.9043425 |
8478.3 |
489 |
3 |
1 |
0.0241730 |
0.0725053 |
0.9050744 |
8478.4 |
489 |
4 |
1 |
0.0245289 |
0.0714825 |
0.9057420 |
8478.54 |
489 |
54 |
1 |
0.0658483 |
0.0853839 |
0.8543902 |
8478.55 |
489 |
55 |
1 |
0.0681584 |
0.0871989 |
0.8505860 |
8478.56 |
489 |
56 |
1 |
0.0706130 |
0.0891097 |
0.8465696 |
8478.57 |
489 |
57 |
1 |
0.0732226 |
0.0911205 |
0.8423290 |
8478.58 |
489 |
58 |
1 |
0.0759986 |
0.0932355 |
0.8378517 |
- Glimpse of “placebo” data:
placebo %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
0 |
0.0458879 |
0.0614893 |
0.8954444 |
8478.1 |
489 |
1 |
0 |
0.0431460 |
0.0604835 |
0.8989802 |
8478.2 |
489 |
2 |
0 |
0.0409669 |
0.0595351 |
0.9019369 |
8478.3 |
489 |
3 |
0 |
0.0392643 |
0.0586422 |
0.9043961 |
8478.4 |
489 |
4 |
0 |
0.0379704 |
0.0578028 |
0.9064217 |
8478.54 |
489 |
54 |
0 |
0.0142297 |
0.0692422 |
0.9175134 |
8478.55 |
489 |
55 |
0 |
0.0113442 |
0.0707406 |
0.9187176 |
8478.56 |
489 |
56 |
0 |
0.0088875 |
0.0723194 |
0.9194359 |
8478.57 |
489 |
57 |
0 |
0.0068390 |
0.0739820 |
0.9196849 |
8478.58 |
489 |
58 |
0 |
0.0051668 |
0.0757324 |
0.9194921 |
- Calculate risks and corresponding treatment effects (RR/RD) by end
of follow-up using parametric g-formula
cumIncTreated_te <- calculateCumInc(treated)#a=1
cumIncPlacebo_te <- calculateCumInc(placebo)#a=0
cumIncTreated_te_60 <- cumIncTreated_te[length(cutTimes)]
cumIncPlacebo_te_60 <- cumIncPlacebo_te[length(cutTimes)]
te_rr <- cumIncTreated_te_60 / cumIncPlacebo_te_60
te_rd <- cumIncTreated_te_60 - cumIncPlacebo_te_60
results_te <- data.frame(cumIncTreated_te_60, cumIncPlacebo_te_60, te_rr, te_rd)
knitr::kable(round(results_te, 2))
Separable effects
Following equation (9) from Stensrud
et al. Journal of the American Statistical Association. 2020
To this matter, we will use the long format data set prepared before:
longProstRed
.
- Make one extra copy of the exposure
rx
, named
Orx
, to be used in the hazard of death due to other
causes.
longProstRed$Orx <- longProstRed$rx
- Fit conditional pooled logistic regression models
plrFitP <-
glm(
prostateDeath ~ rx*(dtime + I(dtime ^ 2)+ I(dtime ^ 3)) + normalAct + ageCat + hx + hgBinary,
data = longProstRed,
family = binomial()
)
plrFitO <-
glm(
otherDeath ~ Orx * (dtime + I(dtime ^ 2) + I(dtime ^ 3)) + normalAct + ageCat + hx + hgBinary,
data = longProstRed,
family = binomial()
)
Create three copies of the data:
- Data set construction where Ay and Ad = 1
treated <-
baseline[rep(1:n, each = length(cutTimes)), ] #One row for each time
treated$dtime <- rep(cutTimes, n)
treated$rx <- 1
treated$Orx <- 1
- Dataset construction where Ay and Ad = 1
placebo <-
baseline[rep(1:n, each = length(cutTimes)), ] #One row for each time
placebo$dtime <- rep(cutTimes, n)
placebo$rx <- 0
placebo$Orx <- 0
- Dataset construction where Ay = 1, Ad = 0
treatAy <-
baseline[rep(1:n, each = length(cutTimes)), ]
treatAy$dtime <- rep(cutTimes, n)
treatAy$rx <- 1
treatAy$Orx <- 0
- Calculate hazards for each time interval in the three cloned data
sets
## For Ay = 1 and Ad = 1
treated$hazardP <-
predict(plrFitP, newdata = treated, type = 'response')
treated$hazardO <-
predict(plrFitO, newdata = treated, type = 'response')
treated$s <- (1 - treated$hazardP) * (1 - treated$hazardO)
## For Ay = 0, Ad = 0
placebo$hazardP <-
predict(plrFitP, newdata = placebo, type = 'response')
placebo$hazardO <-
predict(plrFitO, newdata = placebo, type = 'response')
placebo$s <- (1 - placebo$hazardP) * (1 - placebo$hazardO)
## For Ay = 1, Ad = 0
treatAy$hazardP <-
predict(plrFitP, newdata = treatAy, type = 'response')
treatAy$hazardO <-
predict(plrFitO, newdata = treatAy, type = 'response')
treatAy$s <- (1 - treatAy$hazardP) * (1 - treatAy$hazardO)
- Glimpse of “treated” data:
treated %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, Orx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
1 |
1 |
0.0231061 |
0.1215098 |
0.8581917 |
8478.1 |
489 |
1 |
1 |
1 |
0.0234620 |
0.1070610 |
0.8719889 |
8478.2 |
489 |
2 |
1 |
1 |
0.0238175 |
0.0951232 |
0.8833249 |
8478.3 |
489 |
3 |
1 |
1 |
0.0241730 |
0.0852474 |
0.8926403 |
8478.4 |
489 |
4 |
1 |
1 |
0.0245289 |
0.0770658 |
0.9002956 |
8478.54 |
489 |
54 |
1 |
1 |
0.0658483 |
0.0763298 |
0.8628481 |
8478.55 |
489 |
55 |
1 |
1 |
0.0681584 |
0.0726713 |
0.8641235 |
8478.56 |
489 |
56 |
1 |
1 |
0.0706130 |
0.0686332 |
0.8656002 |
8478.57 |
489 |
57 |
1 |
1 |
0.0732226 |
0.0642719 |
0.8672116 |
8478.58 |
489 |
58 |
1 |
1 |
0.0759986 |
0.0596529 |
0.8688820 |
- Glimpse of “placebo” data:
placebo %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, Orx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
0 |
0 |
0.0458879 |
0.0509117 |
0.9055366 |
8478.1 |
489 |
1 |
0 |
0 |
0.0431460 |
0.0501587 |
0.9088594 |
8478.2 |
489 |
2 |
0 |
0 |
0.0409669 |
0.0495393 |
0.9115233 |
8478.3 |
489 |
3 |
0 |
0 |
0.0392643 |
0.0490433 |
0.9136181 |
8478.4 |
489 |
4 |
0 |
0 |
0.0379704 |
0.0486621 |
0.9152153 |
8478.54 |
489 |
54 |
0 |
0 |
0.0142297 |
0.0488282 |
0.9376369 |
8478.55 |
489 |
55 |
0 |
0 |
0.0113442 |
0.0468247 |
0.9423623 |
8478.56 |
489 |
56 |
0 |
0 |
0.0088875 |
0.0447376 |
0.9467726 |
8478.57 |
489 |
57 |
0 |
0 |
0.0068390 |
0.0425801 |
0.9508721 |
8478.58 |
489 |
58 |
0 |
0 |
0.0051668 |
0.0403663 |
0.9546755 |
- Glimpse of “treatAy” data:
treatAy %>%
filter(patno %in% c(489)) %>% select(
patno, dtime, rx, Orx, hazardP, hazardO, s
) %>% slice(1:5, 55:59) %>% knitr::kable()
8478 |
489 |
0 |
1 |
0 |
0.0231061 |
0.0509117 |
0.9271586 |
8478.1 |
489 |
1 |
1 |
0 |
0.0234620 |
0.0501587 |
0.9275561 |
8478.2 |
489 |
2 |
1 |
0 |
0.0238175 |
0.0495393 |
0.9278231 |
8478.3 |
489 |
3 |
1 |
0 |
0.0241730 |
0.0490433 |
0.9279692 |
8478.4 |
489 |
4 |
1 |
0 |
0.0245289 |
0.0486621 |
0.9280027 |
8478.54 |
489 |
54 |
1 |
0 |
0.0658483 |
0.0488282 |
0.8885387 |
8478.55 |
489 |
55 |
1 |
0 |
0.0681584 |
0.0468247 |
0.8882084 |
8478.56 |
489 |
56 |
1 |
0 |
0.0706130 |
0.0447376 |
0.8878085 |
8478.57 |
489 |
57 |
1 |
0 |
0.0732226 |
0.0425801 |
0.8873151 |
8478.58 |
489 |
58 |
1 |
0 |
0.0759986 |
0.0403663 |
0.8867029 |
- Calculate cumulative incidence
cumIncTreated <- calculateCumInc(treated)
cumIncTreatAy <- calculateCumInc(treatAy)
cumIncPlacebo <- calculateCumInc(placebo)
estimatesFullData <-
data.frame(cumIncTreated, cumIncTreatAy, cumIncPlacebo)
knitr::kable(round(estimatesFullData[36,], 2))
- Cumulative incidence curves
plot(cutTimes, cumIncTreated, type = "s",
ylim = c(0, 1), ylab = "Risk",
xlab = "Months",
lty = 1, lwd = 1, xlim = c(0, 52))
lines(cutTimes, cumIncPlacebo, type = "s",
col = 2, ylim = c(0, 1), lwd = 1)
lines(cutTimes, cumIncTreatAy, type = "s",
col = 3, ylim = c(0, 1), lwd = 1)
legend(x = 0, y = 1,
c("(Ay=1,Ad=1)", "(Ay=1,Ad=0)", "(Ay=0,Ad=0)"),
bty = "n", col = c(1, 3, 2),
lty = c(1, 1, 1), cex = 1, pt.cex = 1, lwd = 1)
![]()